

Roper Properties on the Lattice: An Update

Huey-Wen Lin University of Washington

WASHINGTON

Resonances

Last Nstar

§ Systematics: Finite-volume effect, sea N_f , lattice spacing, etc.

 $\mathcal{N}_{f}=2+1 Roper$

WASHINGTON

 $\mathcal{N}_{f}=2+1 \mathcal{R}oper$

§ χQCD Collaboration (partially quenched)

Solution Solution Solution Control to the term of term of

"Welcome to the lattice and its dangerous animals."

Karl Jansen

"Welcome to the lattice and its dangerous animals."

Karl Jansen

§ Systematics for excited states are more significant

§ Systematics for excited states are more significant

Volume Dependence

§ 2+1f anisotropic lattices, $M_{\pi} \approx 390$ MeV, $L \approx 4$, 3, 2.5, 2 fm $M_{\pi}L \approx 7.7$, 5.8, 4.8, 3.9

Huey-Wen Lin — Nstar 2011

 $A_N(4 \text{ fm})/A_N(3 \text{ fm}) = 0.961(35)$

NPLQCD, 1104.4101

Volume Dependence

§ 2+1f anisotropic lattices, $M_{\pi} \approx 390$ MeV, $L \approx 4$, 3, 2.5, 2 fm $M_{\pi}L \approx 7.7$, 5.8, 4.8, 3.9

EM Form Factors

§ Three-point function with interpolation operator J $C_{3pt}^{\Gamma,O}(\vec{p},t,\tau) = \sum_{\alpha,\beta} \Gamma^{\alpha,\beta} \langle J_{\beta}(\vec{p},t) O(\tau) \overline{J}_{\alpha}(\vec{p},0) \rangle$ § The form factors are buried in the amplitudes

$$\Gamma_{\mu,AB}^{(3),T}(t_{i},t,t_{f},\vec{p}_{i},\vec{p}_{f}) = a^{3}\sum_{n}\sum_{n'}\frac{1}{Z_{j}}\frac{Z_{n',B}(p_{f})Z_{n,A}(p_{i})}{4E_{n}'(\vec{p}_{f})E_{n}(\vec{p}_{i})}e^{-(t_{f}-t)E_{n}'(\vec{p}_{f})}e^{-(t-t_{i})E_{n}(\vec{p}_{i})} \\
\times \sum_{s,s'}T_{\alpha\beta}u_{n'}(\vec{p}_{f},s')g\langle N_{n'}(\vec{p}_{f},s') | j_{\mu}(0) | N_{n}(\vec{p}_{i},s)\rangle\overline{u}_{n}(\vec{p}_{i},s)_{\alpha}$$

§ Nucleon form factor (n = n' = 0) $\langle N | V_{\mu} | N \rangle (q) = \overline{u}_{N}(p') \left[\gamma_{\mu} F_{1}(q^{2}) + \sigma_{\mu\nu} q_{\nu} \frac{F_{2}(q^{2})}{2m} \right] u_{N}(p) e^{-iq \cdot x}$ § Nucleon-Roper form factor (n = 0, n' = 1 or n = 1, n' = 0) $\langle N_{2} | V_{\mu} | N_{1} \rangle_{\mu}(q) = \overline{u}_{N_{2}}(p') \left[F_{1}(q^{2}) \left(\gamma_{\mu} - \frac{q_{\mu}}{q^{2}} q \right) + \sigma_{\mu\nu} q_{\nu} \frac{F_{2}(q^{2})}{M_{N_{1}} + M_{N_{2}}} \right] u_{N_{1}}(p) e^{-iq \cdot x}$

WASHINGTON

Nucleon Form Factors

§ $N_f = 2+1$ anisotropic lattices, $M_\pi \approx 450$, 580, 875 MeV

HWL et al., arXiv: 1005.0799, 1104.4319

Nucleon-Roper Form Factors

§ Still quenched, more pion masses \Rightarrow 0f anisotropic clover ($a \approx 0.1$ fm, $\xi \approx 3$) $\Rightarrow M_{\pi} \approx 480$, 720, 1100 MeV

Nucleon-Roper Form Factors

§ Turn on the quark loops in the sea

(*L*=3, 2.5, 2.5 fm)

≈ 2+1f anisotropic clover with $M_{\pi} \approx 390$, 450, 875 MeV

- * With Saul Cohen (BU) Q^2 [GeV²]
- Calculation performed using (NSF MRI PHY-0922770)Hyak cluster at U. Washington

Nucleon-Roper Form Factors

§ Turn on the quark loops in the sea (L=3, 2.5, 2.5 fm)≈ 2+1f anisotropic clover with $M_{\pi} \approx 390$, 450, 875 MeV 0.1 $F_1^{D_R}$ 0 Preliminarv 0.5 202.5

* With Saul Cohen (BU) Q² [GeV²]
† Calculation performed using (NSF MRI PHY-0922770)

Hyak cluster at U. Washington

Axíal Propertíes

Axíal Couplings

Axíal Transítíon Form Factors

- § Contains spin-structure information
- § Combine with neutrino-nucleus cross sections to extract neutrino mass splittings and mixing angles
- § 2+1 anisotropic lattices, $M_{\pi} \approx 390$, 450, 875 MeV

Large-Q² Prospects

Remarks

§ Limited momenta on the lattice: $p^2 = (2\pi/L)^2 n a^{-2}$ \Rightarrow Larger *n*, finer *a*, ...

§ To get larger momentum, we use $O(ap) \approx 1$

Methodology for improving a traditional lattice calculation
Multiple lattice spacings to remove lattice artifacts

HWL et al., arXiv: 1005.0799, 1104.4319

Remarks

§ Limited momenta on the lattice: $p^2 = (2\pi/L)^2 n a^{-2}$ > Larger *n*, finer *a*, ...

§ To get larger momentum, we use $O(ap) \approx 1$

Methodology for improving a traditional lattice calculation
 Multiple lattice spacings to remove lattice artifacts
 HWL et al., arXiv: 1005.0799, 1104.4319

§ Possible future improvement

 Step-scaling through multiple lattice spacings and volumes
 Higher momentum transfer

Similar idea used for heavy quarks HWL et al., Phys.Rev.D76:074506 (2007)

Summary and Outlook

§ Progress!

From "quenched" to "dynamical"

Excited baryon resonances (spin identification by HSC)
Transition axial couplings from direct or volume-dep. calculation
p-P₁₁ form factors
Lighter pion mass, multiple lattice spacings, volumes, etc.

§ The future

Get a graduate student to increase the operator basis

 (plain single-point operator or fancy ones with little group)
 Check on the multiple-particle states

Backup Slídes

Fíníte-Volume Dependence

§ Systematics for excited state are more significant

Volume Dependence

§ 2+1f anisotropic lattices, $m_{\pi} \approx 390$ MeV, $L \approx 4$, 3, 2.5, 2 fm

 $A_{S}(4 \text{ fm})/A_{S}(3 \text{ fm}) = 0.96(23)$

§ Turn on the quark loops in the sea (L=3, 2.5, 2.5 fm) $\approx 2+1 \text{f}$ anisotropic clover with $M_{\pi} \approx 390, 450, 875 \text{ MeV}$

- * With Saul Cohen (Boston University)
- Calculation performed using (NSF MRI PHY-0922770)
 Hyak cluster at U. Washington

§ Infinite-momentum frame definition

$$\rho(\mathbf{b}) \equiv \int \frac{d^2 \mathbf{q}}{(2\pi)^2} F_1(\mathbf{q}^2) e^{i\mathbf{q}\cdot\mathbf{b}} = \int_0^\infty \frac{Q \, dQ}{2\pi} J_0(bQ) F_1(Q^2)$$

§ How does high- Q^2 affect charge density?

